library(tidyverse)
library(Seurat)
library(cowplot)
library(rstatix)
library(viridis)
library(ggpubr)
rm(list = ls())
options(stringsAsFactors = F)
options(future.globals.maxSize = 10000 * 1024^2)
grp_names <- c("Early Stage", "Late Stage")
grp_colors <- c("#8AC786", "#B897CA")
cell_types <- c("Hepatocyte", "T/NK",
"Myeloid", "B",
"Endothelial", "Fibroblast")
cell_colors <- c("#A01FF0", "#1F78B4", "#4EB29D",
"#DA3F4C", "#F1EE97", "#08306B")
29 核心特征单细胞表达
在完成细胞类群的注释并获取准确信息后,我们进一步深入分析了先前确定的核心特征在bulk-RNA水平上的表达情况。接下来,为了验证这些特征在细胞层面的表达是否与bulk-RNA数据相符,我们特别关注了这些核心特征在不同细胞类群的早晚期表达情况。
29.1 加载R包
使用rm(list = ls())
来清空环境中的所有变量。
29.2 导入数据
29.3 细胞类群的tSNE
查看细胞类群的可视化结果
结果:从tSNE图得知,有6种类型的细胞。
29.4 核心特征表达分布
查看核心特征在单细胞水平的表达密度分布图
feature_FeaturePlot <- FeaturePlot(
object = seurat_obj,
features = common_feature %>%
dplyr::filter(Enrich %in% c("Both_Early", "Both_Late")) %>%
dplyr::pull(FeatureID),
reduction = "tsne",
ncol = 3)
feature_FeaturePlot
结果:6个核心特征在不同细胞类群的分布不同,在 章节 24 发现的SLC6A8富集在Hepatocyte细胞群。
29.5 核心特征点图
查看核心特征在单细胞水平的表达的点图
29.6 SLC6A8表达分布
单独生成关注的核心特征SLC6A8在细胞水平的表达分布情况。
29.7 SLC6A8差异结果
在先前bulk RNA结果 小节 23.6 中,我们发现核心特征SLC6A8富集在HCC晚期。现在在细胞水平上,它的表达分布情况是如何?
结果:在细胞水平上,SLC6A8在HCC早期和晚期的差异结果。SLC6A8分别显著富集在Hepatocyte和Myeloid的晚期分组。
29.8 输出结果
ggsave("./data/result/Figure/Fig7-B.pdf", SLC6A8_FeaturePlot, width = 5, height = 4, dpi = 600)
ggsave("./data/result/Figure/Fig7-C.pdf", SLC6A8_DotPlot, width = 5, height = 3, dpi = 600)
ggsave("./data/result/Figure/Fig7-D.pdf", SLC6A8_vlnplot, width = 8, height = 4, dpi = 600)
ggsave("./data/result/Figure/SFig6.pdf", feature_DotPlot, width = 8, height = 4, dpi = 600)
29.9 总结
在深入研究细胞类群的信息后,我们针对六个核心特征进行了详尽的分析,特别关注了SLC6A8这一基因在细胞层面的表达情况。
系统信息
R version 4.3.3 (2024-02-29)
Platform: aarch64-apple-darwin20 (64-bit)
Running under: macOS Sonoma 14.2
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRlapack.dylib; LAPACK version 3.11.0
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
time zone: Asia/Shanghai
tzcode source: internal
attached base packages:
[1] stats graphics grDevices datasets utils methods base
other attached packages:
[1] ggpubr_0.6.0 viridis_0.6.5 viridisLite_0.4.2 rstatix_0.7.2
[5] cowplot_1.1.3 Seurat_5.0.3 SeuratObject_5.0.2 sp_2.1-4
[9] lubridate_1.9.3 forcats_1.0.0 stringr_1.5.1 dplyr_1.1.4
[13] purrr_1.0.2 readr_2.1.5 tidyr_1.3.1 tibble_3.2.1
[17] ggplot2_3.5.1 tidyverse_2.0.0
loaded via a namespace (and not attached):
[1] RColorBrewer_1.1-3 rstudioapi_0.16.0 jsonlite_1.8.8
[4] magrittr_2.0.3 spatstat.utils_3.0-4 rmarkdown_2.26
[7] vctrs_0.6.5 ROCR_1.0-11 spatstat.explore_3.2-7
[10] htmltools_0.5.8.1 broom_1.0.5 sctransform_0.4.1
[13] parallelly_1.37.1 KernSmooth_2.23-22 htmlwidgets_1.6.4
[16] ica_1.0-3 plyr_1.8.9 plotly_4.10.4
[19] zoo_1.8-12 igraph_2.0.3 mime_0.12
[22] lifecycle_1.0.4 pkgconfig_2.0.3 Matrix_1.6-5
[25] R6_2.5.1 fastmap_1.1.1 fitdistrplus_1.1-11
[28] future_1.33.2 shiny_1.8.1.1 digest_0.6.35
[31] colorspace_2.1-0 patchwork_1.2.0 tensor_1.5
[34] RSpectra_0.16-1 irlba_2.3.5.1 progressr_0.14.0
[37] fansi_1.0.6 spatstat.sparse_3.0-3 timechange_0.3.0
[40] httr_1.4.7 polyclip_1.10-6 abind_1.4-5
[43] compiler_4.3.3 withr_3.0.0 backports_1.4.1
[46] carData_3.0-5 fastDummies_1.7.3 ggsignif_0.6.4
[49] MASS_7.3-60.0.1 tools_4.3.3 lmtest_0.9-40
[52] httpuv_1.6.15 future.apply_1.11.2 goftest_1.2-3
[55] glue_1.7.0 nlme_3.1-164 promises_1.3.0
[58] grid_4.3.3 Rtsne_0.17 cluster_2.1.6
[61] reshape2_1.4.4 generics_0.1.3 gtable_0.3.5
[64] spatstat.data_3.0-4 tzdb_0.4.0 data.table_1.15.4
[67] hms_1.1.3 car_3.1-2 utf8_1.2.4
[70] spatstat.geom_3.2-9 RcppAnnoy_0.0.22 ggrepel_0.9.5
[73] RANN_2.6.1 pillar_1.9.0 spam_2.10-0
[76] RcppHNSW_0.6.0 later_1.3.2 splines_4.3.3
[79] lattice_0.22-6 renv_1.0.0 survival_3.7-0
[82] deldir_2.0-4 tidyselect_1.2.1 miniUI_0.1.1.1
[85] pbapply_1.7-2 knitr_1.46 gridExtra_2.3
[88] scattermore_1.2 xfun_0.43 matrixStats_1.3.0
[91] stringi_1.8.4 lazyeval_0.2.2 yaml_2.3.8
[94] evaluate_0.23 codetools_0.2-19 BiocManager_1.30.23
[97] cli_3.6.2 uwot_0.2.2 xtable_1.8-4
[100] reticulate_1.37.0 munsell_0.5.1 Rcpp_1.0.12
[103] globals_0.16.3 spatstat.random_3.2-3 png_0.1-8
[106] parallel_4.3.3 dotCall64_1.1-1 listenv_0.9.1
[109] scales_1.3.0 ggridges_0.5.6 leiden_0.4.3.1
[112] rlang_1.1.3